

Digitizing the inaccessible.

Quickly turn asset data into digital insights, with Elios 3, the ultimate indoor drone for inspection, mapping, and surveying.

Much more than a flying camera, Elios 3 is a powerful data-harvesting tool.

Relying on the power of computer vision and LiDAR mapping, Elios 3 is a versatile indoor drone opening doors to a world where performing systematic inspections does not require months of training, reporting is done intuitively on a 3D model of your asset, and situational awareness is built into the piloting app.

FlyAware™ SLAM Engine

SLAM-Based Stabilization

3D Live Map

3D reporting

3D Surveying Solution

Modular Payload Bay

Collision-Resilient Rugged Design

Close-Up Inspection Dedicated Payload

Extended Air-Time

ELIOS 3 UT PAYLOAD

Safe remote thickness measurements

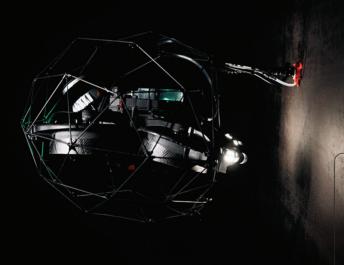
Remotely capture A-scans at height and in hard-to-reach areas.

Developed in partnership with Cygnus Instruments, the UT Payload turns the Elios 3 into a flying UTM gauge that can take accurate thickness measurements backed up with high-resolution A-scans in the most challenging areas.

Location-Tagged **UT Measurements**

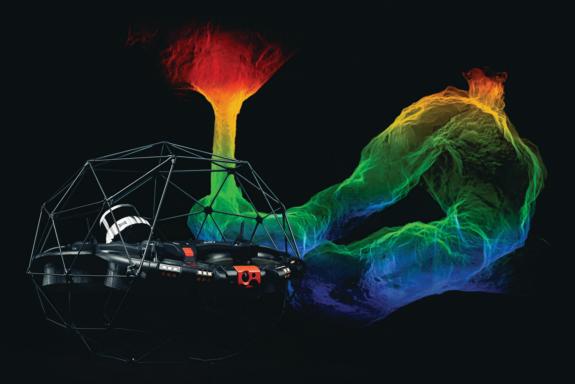
Smart Couplant Dispenser

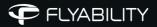
Smart Probe Arm


Modular Probe Head

Cleaning Module

Live A-Scans




FARO

ELIOS 3 SURVEYING PAYLOAD



Surveying the inaccessible.

Safely create centimeter accurate scans of hard-to-reach areas.

Flyability's Surveying Payload turns the Elios 3 into a flying mobile scanner that can fit through openings as small as 50x50 cm, and create high resolution scans beyond line of sight, - for rapid insights that are not accessible with traditional tools or other UAV technologies.

From

0.1% drift

Accuracy

6_mm

Precision 1σ

Up to

100m

Range

1.3M pts/sec

Scanning rate

10x

Photon sensitivity

[] learn more

Elios 3 Flammable Gas Sensor

Real-time warning of flammable gases

Achieve greater safety

Reliably detect flammable gases in hazardous areas, enhancing awareness of atmospheric conditions inside your assets to quickly adjust safety measures during drone operations.

Ease permitting process

Complement traditional handheld sensors with airborne detection to ensure continuous flammable gas monitoring, streamlining risk assessments and accelerating permit approvals.

Enjoy greater peace of mind

Reduce stress factors when operating drones in high-risk areas. The gas sensor adds an extra layer of safety and provides real-time awareness of potential hazards.

Important notice: The Flammable Gas Sensor is designed as an extra safeguard for detecting flammable gases. It is meant to complement, not replace, existing safety measures and protocols. However, the sensor itself doesn't alter or minimize the potential risks associated with flying the Elios 3 non-ATEX drone in flammable environments.

Technical specifications

FLAMMABLE GAS SENSOR PAYLOAD

Sensor manufacturer	NevadaNano				
Sensor type	Molecular Property Spectrometer™ (MPS™) Flammable Gas Sensor 5.0				
Calibration	No calibration required (factory calibrated)				
Response time (T90)	< 20 seconds ¹				
Operating temperature	0 °C to 50 °C (32 °F to 122 °F)				
Humidity range	0% to 95% ¹				
Pressure range	80 to 120 kPa ¹				
Airflow velocity	7 m/s ¹				
Bump Test flow rate	Min: 150 mL/min ¹ Max: 500 mL/min ¹				
Keep alive	Max: 3 min				
Ingress protection	Splash and dust resistant design				
Weight	45.5 g, 1.60 oz				

1. Value subject to change

AIRCRAFT WITH GAS SENSOR PAYLOAD MOUNTED

Modification from nominal specifications

Payloads compatibility	Rev6 and Rev7 LiDAR Payloads, RAD Payload, UT Payload
Flight time while hovering ¹	Elios 3 + Lidar Rev6: 9 min 8 sec Elios 3 + Lidar Rev7: 8 min 39 sec Elios 3 + Lidar Rev7 + RAD Payload: 7 min 26 sec Elios 3 + Lidar Rev7 + UT Payload: 7 min 31 sec

1. All tests run at Sea Level, 20°C, 0% humidity, no wind, in ASSIST, Lighting by default (20W), new battery full capacity 98.8Wh, 100% to 0% on tablet (a margin of 10% is kept by the system).

IN-FLIGHT READING

- Sensor status
- 2 Gauge defined tresholds
- 3. Max recorded LEL % value
- 4 LEL % live value
- Gas class

FLAMMABLE GASES DETECTED

The Flammable Gas Sensor is factory calibrated to the accuracy levels shown below, with no need for further recalibration or adjustment. It also detects other gases not listed in the table, including 1-butene, acetylene, ammonia, cyclohexane, decane, diesel, dimethyl carbonate, ethanol, gasoline vapors, hexane, and methanol. However, the sensor does not provide LEL accuracy for these gases and may over- or under-report, so special precautions should be taken when using the MPS to detect them.

Gas	Formula	Class	Detection Range [%LEL]	% Volume of gas at 100 %LEL¹ (ISO 10156)	MPS Accuracy 0 to 50 %LEL ¹ (ISO 10156)	% Volume of gas at 100 %LEL ¹ (IEC60079-20-1)	MPS Accuracy 0 to 50 %LEL ¹ (IEC60079-20-1)
Butane	C ₄ H ₁₀	4	0-100	1.8 %VOL	±5 %LEL	1.4 %VOL	±5 %LEL
Ethane	C ₂ H ₆	4	0-100	3.0 %VOL	±5 %LEL	2.4 %VOL	±5 %LEL
Hydrogen	H ₂	1	0-100	4.0 %VOL	±5 %LEL	4.0 %VOL	±7 %LEL
Isobutane	HC(CH ₃) ₃	4	0-100	1.8 %VOL	±5 %LEL	1.3 %VOL	±9 %LEL
Isobutylene	C ₄ H ₈	4	0-100	1.8 %VOL	±5 %LEL	1.8 %VOL	±5 %LEL
Isopropanol	C ₃ H ₈ O	4	0-100	2.0 %VOL	±10 %LEL	2.0 %VOL	+20 %LEL
Methane	CH ₄	3	0-100	5.0 %VOL	±3 %LEL	4.4 %VOL	±3 %LEL
MEK	C ₄ H ₈ O	5	0-100	1.4 %VOL	±5 %LEL	1.5 %VOL	+16 %LEL
Pentane	C ₅ H ₁₂	5	0-100	1.5 %VOL	±5 %LEL	1.1 %VOL	±6 %LEL
Propane	C ₃ H ₈	4	0-100	2.1 %VOL	±6 %LEL	1.7 %VOL	±8 %LEL
Propylene	C ₃ H ₆	4	0-100	2.4 %VOL	±5 %LEL	2.0 %VOL	±5 %LEL
Acetone	C ₃ H ₆ O	5	0-100	2.5 %VOL	+20 %LEL	2.5 %VOL	+24 %LEL
Ethylene	C ₂ H ₄	4	0-100	2.7 %VOL	−12 %LEL	2.3 %VOL	−14 %LEL
Heptane	C ₇ H ₁₆	5	0-100	1.1 %VOL	±12 %LEL	0.85 %VOL	±15 %LEL
Octane	C ₈ H ₁₈	6	0-100	1.0 %VOL	±12 %LEL	0.8 %VOL	±15 %LEL
Styrene	C ₈ H ₈	6	0-100	1.1 %VOL	-20 %LEL	1.0 %VOL	−17 %LEL
Toluene	C ₇ H ₈	6	0-100	1.2 %VOL	±12 %LEL	1.0 %VOL	±13 %LEL
Xylene	C ₈ H ₁₀	6	0-100	1.1 %VOL	±12 %LEL	1.0 %VOL	±13 %LEL

^{1.} Accuracy is guaranteed for methane and hydrogen across the full environmental range. For other gases, accuracy typically meets published tolerances under standard conditions of 20°C and 50% RH, and when oxygen is present in the air. Additionally, the airflow generated by the drone's propellers can disperse gas concentrations around the sensor and interfere with the accuracy of gas measurements. For more precise readings, it is recommended to land the drone and turn off the propellers.

FLAMMABLE GAS SENSOR PACKAGE

Spare filters